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The problem of calculating the conformation of a molecule by global minimization 
of its free energy is precisely formulated. Various bounds and estimates are derived 
for the number of energy evaluations necessary to perform the task, independent of the 
search algorithm used. The algorithm by Schubert is cited as optimal for the problem 
as formulated, and an improvement for starting it is presented. In light of the estimates 
for computer time and memory for the optimal method, ab initio global minimization is 
proven to be infeasible for calculating conformations of even oligopeptides. 

Numerous attempts have been made to calculate the conformation of a molecule, 
particularly proteins and polypeptides, by minimizing its estimated free energy as a 
function of conformation (see for instance [I]). This approach is sound in physical 
theory since at equilibrium at constant temperature and pressure, the Gibbs free 
energy is minimal. The system is assumed to be a dilute solution so that the energy 
is that of a single molecule (interacting with solvent in a sophisticated analysis) and 
depends upon conformation, which is customarily specified by a vector of n 
dihedral angles x = (x1 ,..., x,) corresponding to rotation about single bonds. The 
difficulty is that the energy function thus calculated for all possible conformations 
is a very complicated, multimodal function of the dihedral angles. Hence ordinary 
local minimization algorithms are not appropriate [2]. A number of global methods 
have been proposed [3-6], but they are of limited effectiveness, and lack of a clear 
understanding of the problem they were to solve has clouded the issue. 

From the point of view of statistical mechanics, at equilibrium the ensemble of 
solute molecules will be distributed throughout UN conformation space with a 
density dependent upon the energy according to the Boltzmann distribution. 
Consequently the desired conformation is actually all regions of conformation 
space having energies within a few kT of the global minimum of energy. All such 

* Present address: 134 Arlington Rd., Montgomery, Alabama 36105. 

224 
Copyright 8 1975 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



CONFORMATION AND GLOBAL SEARCH 225 

conformations are physically significant, and others are not. In order to make the 
task nontrivial as well as practical, the answers are desired with a minimum 
amount of computational effort. 

Before the problem can be more precisely formulated, we need to examine the 
energy function f(x) more closely. Since each xi is a rotation (in, say, degrees), 
the domain Z off is not Euclidean space, but a toroidal manifold because 0” = 360”; 
hence Z is finite. For any x, f(x) may be computed, and such evaluations are taken 
to be the time limiting step. The most practical way is to approximate the energy 
with f as a semiempirical function [7] of the form 

f = C g&ii), 
izi 

(1) 

where the sum extends over all atom pairs i and j separated by a distance rii . The 
functions gij are minimal for, say, rii = ri*i . Therefore, Cizi g&$) is a lower 
bound for f. However gii --+ + co as rii ---f 0, [7] so that there can be points or even 
subspaces of conformation space where f = co, and therefore f is not bounded 
from above. In general, af/lax, , i = l,..., n is not globally bounded. Now f can be 
globally bounded if it is arbitrarily truncated above a certain value Ymax chosen 
such that conformations of energy greater than y max are physically unimportant: 

f(X) = min (C gdrd, Ymax). 

FORMULATION 

Now the global minimization task can be formulated generally and precisely. 
Let @= be the set of all functions f such that f is single-valued and real, defined on a 
finite domain Z as a function of n variables x E I. Further, let there be defined a 
metric d(x, , XJ for all x, , xb E Z, and let f obey a Lipschitz condition 

I f(xa) - f(xdl <L. &a,xd (3) 

for some known a priori Lipschitz constant L for all x, , xb E I. Assume no 
other conditions on QL . Denote by y* = minxs, { y = f(x)} the global minimum 
of the function, and by dy the chosen accuracy of function value desired (dy 
comparable to kT). Then the objective is to determine D = {x 1 f(x) < y* + dy} 
in the least number of function evaluations possible. 

Remark. The above are the weakest conditions on or. consistent with the 
objective. If Z were infinite, an infinite number of evaluations would be required. 
If there were no metric, the Lipschitz condition would be undefined. Customarily 



226 GORDON M. CRIPPEN 

d(.) is taken to be the ordinary Euclidean distance, or more useful for a discrete Z, 

xai - xbi 1 
i=l 

(4) 

as will be used later. If there were no Lipschitz condition and Z is continuous, an 
infinite number of evaluations would be necessary; for Z discrete, the objective is 
trivial and necessitates evaluating every point in I. 

For continuous Z it is often useful to discretize it by choosing a step size dx in 
each xi, i = l,..., 12 according to the Lipschitz condition (3) given the a priori 
constants L and Ay: 

Ax = Ay/L. (5) 

Then D = {x = (klAx,..., k,Ax)j f(x) < y* + Ay}, where the ki are integers. The 
above choice of Ax is the largest permissible, since otherwise some regions which 
belong to D would be missed, and all regions are required. Also Ax must not be 
taken smaller, since then more evaluations will be made in locating essentially 
the same regions belonging to D, and the task was to be done in the least number of 
evaluations. Working with a discrete Z is not only easier, but the convergence to 
stationary points implied by a continuous Z is not physically realistic, i.e., the 
molecules are scattered about conformation space to some extent at temperatures 
greater than absolute zero. Hence only the case of discrete Z will be considered in 
the remainder of this paper. 

BOUNDS AND ESTIMATES 

By the very nature of the objective as formulated in the previous section, there 
is an intrinsic range to the number of evaluations required for a global minimiza- 
tion. In order to derive this, we must first define “essential point.” 

DEFINITION. x, is essential iff there exists no xb E Z such that 

f@b> - L ’ d(xa, xb) > Y** 

That is, the evaluation of any other point plus even precise knowledge of y* is 
insufficient to show that x, is not a member of set D. 

THEOREM 1. The number of evaluations N necessary to determine D for some 
f E @, has the range 2 < N < M, where A4 is the number ofpoints in I. The result is 
independent of search algorithm. 
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Proof. (By exhibition) Upper bound: suppose y* + dy > f(x) > y* for all 
x E I. Then all x are essential and hence N = M. Of course N > M is impossible. 
Lower bound: suppose x, and xb are at least as distant from each other as any 
other pair of points in Z and that 

f(Xa) - fed = L * 4% , &I). (6> 

Then xb is essential and f(xJ = y*, so that X~ is the only member of D. Any other 
point x, is not essential, and f(xJ > f(x@) - L * d(x, , x,) > f(x&) - 
L * d(x, , XJ = f(xb) = y* by Eqs. (3) and (6). Thus D is determined by evaluating 
x, and xb , and therefore N = 2. If M > 1 (the case M = 1 is trivial), then N = 1 
is impossible since there is nothing to compare the one function value with. Q.E.D. 

It should be observed that for conformational calculations, M = (360”/&)” 
which can be large for large IZ. 

The expected number of evaluations E(N) can be estimated from basic 
information theory [8] after some simplifying assumptions. Namely, the informa- 
tion theory entropy of the location of the global minima, Hgm , is estimated as well 
as that of an individual evaluation, H,, . Then assuming all the information 
contained in an evaluation can be applied to the global search problem, and 
assuming each evaluation to be a statistically independent experiment, then 

E(N) = HmIH,, . (7) 

Now Hsm may be estimated by assuming the probabilities of the various x’s being 
in D are mutually independent, and then either assuming there is only one point 
in D (corresponding to the smallest value of Hg,) and hence 

f&n = M . (; log $ _ M-l M-l M log M ), 

or assuming all points have probability + of being in D (maximal value of H,,,J and 
hence, 

H,, = M log 2. (9 

For an estimate of H,, , assume that the probability that y = f(x) is independent 
of adjacent function values and uniformly distributed over the range 0 to R. Then 
the largest value of H,, is 

He, = h@l49, 

where maximum detail is useful; the most pessimistic value is 

H,, = log 2. 

(10) 

(11) 
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Then combining (7) (9), and (11) for the most pessimistic estimate, E(N) = M, 
which is the upper bound of Theorem 1. Using (9) and (10) for medium pessimism, 
E(N) = A4 log 2/lag (R/dy). 

ALGORITHMS 

We are now prepared to discuss search algorithms to solve the global minimiza- 
tion problem, especially the optimal one for our purposes, but first a few words 
about classification and comparison of methods. With the recent proliferation of 
“optimal” algorithms (e.g. [9-13]), it must first be pointed out that an algorithm is 
best in comparison to a class of other methods. The two favorite classes are sequen- 
tial, where the choice of x to be evaluated depends on the results of the previous 
evaluations, and nonsequential, where the x’s to be evaluated are all chosen in 
advance. Inasmuch as nonsequential methods can be considered sequential 
methods that make no use of the intermediate information, only sequential 
methods will be considered here, although Sukharev [lo] has shown that sequential 
is no better than nonsequential under a certain assessment of performance. The 
performance of an algorithm must be judged on all the members of a class of 
functions, in our case CD, . There are two common means of assessing the per- 
formance of an algorithm on a particular function: (a) for a predetermined N 
measure the error in the determination of D and/or y* (preferred method for 
nonsequential algorithms); or (b) the approach used in our case, where one 
measures the N necessary to reduce the inaccuracy in determination of y* and/or 
D to a predetermined level (here, large N corresponds to a large error in, say, y* in 
approach (a)). Now, an algorithm is said to be optimal if it performs better when 
applied to an entire class of functions than any other of a class of algorithms. The 
traditional measure is minimax optimality [9], or the “best guaranteed result,” 
where the maximal performance error over the class of functions is minimal for the 
optimal algorithm compared to that of the other algorithms. In our case, with its 
natural assessment (b), by Theorem 1 the maximum error always corresponds to 
N = M. Thus minimax optimality is trivial for our purposes. A more useful view 
is expected optimality, where an algorithm is optimal if the expected value of N, 
E(N), taken over all or. is minimal with respect to the class of algorithms. This 
corresponds to minimizing computational effort for solving large numbers of 
different problems. 

THE OPnMAL ALGORITHM 

For our purposes, the continuous and discrete algorithm by Shubert [12, 131 is 
optimal. The reader is referred to his papers for a complete explanation of the 
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method, but the following simple description will do for the moment: 1. First 
evaluate the function at an arbitrary point; 2. Calculate according to the known 
points and the Lipschitz condition (3) which point has the lowest possible value; 
3. Evaluate at that point and return to step 2 until the lowest possible function 
value is no less than the lowest known value(s). 

The continuous version, which is somewhat impractical to apply for n > 1, has 
been proved minimax optimal among sequential algorithms with assessment (a) 
with respect to accuracy in estimating y* and D. Its convergence as measured by 
error in estimating y* is 0(1/N) [12]. 

The discrete version has been proved to require smaller N than that of any other 
sequential algorithm with the same arbitrary starting point for each f e QL [13]. 
This is stronger than expected optimality. Clearly, Shubert’s is the method of 
choice for conformational calculations which are formulated as in this paper. 

Shubert claims the choice of starting point is arbitrary, but always picks a corner 
(n > 1) or an endpoint (n = 1) in examples. The following theorem shows how 
his algorithm can be improved by choosing the comer for starting. 

THEOREM 2. For I a discrete hypercube of n dimensions (n 3 l), the optimal 
starting point for global search is a corner, x, . It is assumed that over the class of 
functions aL , the likelihoodp( y) that f(x) = y is independent of x. 

Proof. We need only demonstrate that x,, has the maximum probability over 
all x E I of being essential. Then making the initial evaluation at x0 is the most 
efficient choice, since that point has maximal probability of needing to be evaluated 
regardless of the outcome of the other function evaluations. But from the definition 
we see that xi being essential depends upon f(xJ and the distance d(xi , xi) for all 
xj E 1, i # j. Since as assumed, p(y) is the same for all xi , the only difference 
among the xj is that those with larger d(xi , xi) are less likely to disqualify xi from 
being essential, as is clear from the definition. When xi = x0 , the d’s are largest and 
hence x0 is most likely to be essential. Q.E.D. 

Note. Since I for molecular conformations is an n-dimensional torus, all points 
are equal by the above criterion. 

It is instructive to compare performance of Shubert’s algorithm with the informa- 
tion theory estimates. He gives the example [ 131 of searching out the global minima 
of 500 functions f defined by f(0) = 0, f(k) = Ck w, k = l,..., 100, where w  is a 
random integer variable uniformly distributed over the interval [-9, +9]. Taking 
L = 10, he found an average of 27.89 evaluations were needed per function. 
Assuming k = 50 to be representative of the average behavior of each entire 
curve, by the central limit theorem f(k) is approximately a normally distributed 
random variable with p = 0 and u = 36.7. If fly = 10, then noting 
P(I f(k)/ < 70) = 0.94, we divide the range -70 to 70 into intervals i of length 
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10 and calculate the probability pi that f(k) lies within that interval. Then the 
estimated entropy of an average evaluation is Ci - pi log,,pi = 1.0635 dits. 
Either Hgm = 2.432 dits as given by Eq. (8) (unique minimum) and E(N) = 2.29, 
or Horn = 30.1 dits according to (9) (maximum entropy) and E(N) = 28.30, which 
is fortunately close to the observed 27.89. If, as seems reasonable, the global 
minimum is usually unique, the algorithm averaged per evaluation 0.0872 dits of 
information applied to the task, compared to the estimated 1.06 dits available. 

The application of even this optimal algorithm to sizeable polypeptides is rather 
pointless, as we shall see. As a matter of experience, dx 2 20”, which means that 
for II variable dihedral angles A4 M (360/20)“. Since the algorithm requires M 
words of storage for convenience, or at least N (which can approach M, by 
Theorem 1) even with heroic programming, then even for IZ = 4, M = 
100000 words, and n > 4 is out of the question. Unfortunately even for small 
proteins II 2 200. Furthermore, since N cc M, some 10z50 evaluations of the 
energy might be required for a small protein. A practical application would be for 
instance locating the lowest minima of the 2-variable dipeptide, glycylalanine [3]. 
As explained in the Introduction, this can be approached by taking a cutoff 
ymax = 15 kcal/mole and dx = 20”, and then from the energy map (see [3]), one 
must take L > 7 kcal/20”. About 100 evaluations are required, which is better than 
any other method tried on the same problem. 

CONCLUSION 

Straightforward prediction of conformation by energy minimization is infeasible 
for more than four variables, when only the minimal amount of information on the 
energy function is known. Only by establishing additional conditions on the energy 
function, on an either mathematical or physical basis, and then by employing 
algorithms which make use of these additional features, can conformational 
analysis be rigorously performed. 
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